时效时间对7075铝合金疲劳裂纹扩展速率的影响Effect of aging time on fatigue crack growth rate of 7075 aluminum alloy
程亚军,冷利,宫柏山,王科飞,白鑫,张鹏,王斌
摘要(Abstract):
采用透射电镜、显微硬度仪、拉伸试验和疲劳试验等研究了7075铝合金在欠时效(120℃×8 h)、峰时效(120℃×24 h)与过时效(120℃×48 h)状态下的微观组织、硬度、拉伸性能方面与疲劳裂纹扩展速率方面的差异。结果表明:3种时效状态的合金在高低应力强度因子范围时,疲劳裂纹扩展速率呈现不同的规律。在低应力强度因子范围时,峰时效态合金的疲劳裂纹扩展速率最高,过时效态最低;在高应力强度因子范围时,过时效态的合金表现出最优的疲劳裂纹扩展阻力,而峰时效与欠时效状态的疲劳裂纹扩展阻力相近。结合疲劳损伤能量模型、强塑积与晶界析出相差异,分析了时效时间不同引起疲劳裂纹扩展速率差异的本质原因。
关键词(KeyWords): 7075铝合金;时效时间;疲劳裂纹扩展速率;拉伸性能;硬度
基金项目(Foundation): 中车长春轨道客车股份有限公司科技开发项目(企业内部项目)
作者(Author): 程亚军,冷利,宫柏山,王科飞,白鑫,张鹏,王斌
DOI: 10.13289/j.issn.1009-6264.2020-0465
参考文献(References):
- [1] Xie P,Chen S Y,Chen K H,et al.Enhancing the stress corrosion cracking resistance of a low-Cu containing Al-Zn-Mg-Cu aluminum alloy by step-quench and aging heat treatment[J].Corrosion Science,2019,161:108184.
- [2] Xia P,Liu Z Y,Bai S,et al.Enhanced fatigue crack propagation resistance in a superhigh strength Al-Zn-Mg-Cu alloy by modifying RRA treatment[J].Materials Characterization,2016,118:438-445.
- [3] Qin C,Gou G Q,Che X L,et al.Effect of composition on tensile properties and fracture toughness of Al-Zn-Mg alloy (A7N01S-T5) used in high speed trains[J].Materials and Design,2016,91:278-285.
- [4] Wang W Y,Pan Q L,Wang X D,et al.Non-isothermal aging:A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al-Zn-Mg-Cu alloy[J].Journal of alloys and Compounds,2020,845:156286.
- [5] Zhang Q,Zhu Y M,Gao X,et al.Training high-strength aluminum alloys to withstand fatigue[J].Nature Communications,2020,11:5198.
- [6] Lin J C,Liao H L,Jehng W D,et al.Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution[J].Corrosion Science,2006,48(10):3139-3156.
- [7] Dolan G P,Robinson J S.Residual stress reduction in 7175-T73,6061-T6 and 2017A-T4 aluminum alloys using quench factor analysis[J].Journal of Materials Processing Technology,2004,153:346-351.
- [8] Deschamps A,Texier G,Ringeval S.Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy[J].Materials Science and Engineering A,2009,501:133-139.
- [9] Zhang Y,Milkereit B,Kessler O.Development of continuous cooling precipitation diagrams for aluminum alloys AA7150 and AA7020[J].Journal of Alloys and Compounds,2014,584:581-589.
- [10] Heinz A.Recent development in aluminum alloy for aerospace applications[J].Material Science and Engineering A,2010,280:102-107.
- [11] Hansen V,Karlsen O B,Langsrud Y,et al.Precipitates,zonesand transitions during aging of Al-Zn-Mg-Zr 7000 series alloy[J].Materials Science and Technology,2004,20(2):185-193.
- [12] Berg L K,Gj?nnes J,Hansen V,et al.GP-zones in Al-Zn-Mg alloys and their role in artificial aging[J].Acta Materialia,2001,49(1):3443-3451.
- [13] Stiller K,Warren P J,Hansen V,et al.Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 ℃ and 150 ℃[J].Materials Science and Engineering A,1999,270(1):55-63.
- [14] Blaschko O,Ernst G,Fratzl P,et al.A neutron scattering investigation of the early stages of Guinier-Preston zone formation in Al-Zn-Mg-(Cu) alloys[J].Acta Materialia,1982,30(2):547-552.
- [15] 华明建,李春志,王鸿渐.微观组织对7075合金的屈服强度和抗应力腐蚀性能的影响[J].金属学报,1998,24(1):41-46.HUA Ming-jian,LI Chun-zhi,WANG Hong-jian.Effect of microstructures on the yield strength and SCR of 7075 aluminum alloy[J].Acta Metallurgica Sinica,1998,24(1):41-46.
- [16] Liu R,Zhang Z J,Zhang P,et al.Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys:Damage mechanisms and life prediction[J].Acta Materialia,2015,83:341-356.
文章评论(Comment):
|
||||||||||||||||||
|
||||||||||||||||||